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A B S T R A C T

Joint models for longitudinal and survival data are particularly relevant to many cancer clinical trials
and observational studies in which longitudinal biomarkers (eg, circulating tumor cells, immune
response to a vaccine, and quality-of-life measurements) may be highly associated with time to
event, such as relapse-free survival or overall survival. In this article, we give an introductory
overview on joint modeling and present a general discussion of a broad range of issues that arise
in the design and analysis of clinical trials using joint models. To demonstrate our points
throughout, we present an analysis from the Eastern Cooperative Oncology Group trial E1193, as
well as examine some operating characteristics of joint models through simulation studies.

J Clin Oncol 28:2796-2801. © 2010 by American Society of Clinical Oncology

INTRODUCTION

Cancer studies often collect time-to-event data and
repeated measurements of longitudinal data for
each subject. The longitudinal data, such as circulat-
ing tumor cells, immune response to a vaccine, a
genetic biomarker, or a health outcome, can be im-
portant predictors or surrogates of a time to event,
such as relapse-free survival or overall survival. Clas-
sical models such as the linear mixed model for
longitudinal data and the Cox proportional hazards
model for time-to-event data do not consider de-
pendencies between these two different data types
(longitudinal and time-to-event data). A powerful
method that takes into account the dependency and
association between longitudinal data and time-to-
event data is joint models for longitudinal and time-
to-event data. Joint models for longitudinal and
time-to-event data are models that bring these two
data types together (simultaneously) into a single
model so that one can infer the dependence and
association between the longitudinal biomarker and
time to event to better assess the effect of a treatment.
As a result of the rapid development of clinical and
genetic biomarkers in clinical trials, joint modeling
has gained its popularity in recent years because it
reduces bias in estimates of the treatment effects and
provides improvements of efficiency in the assess-
ment of treatment effects and other prognostic fac-
tors. Specifically, joint models for longitudinal and
survival data are frequently used in quality-of-life
(QOL) studies, where it is of interest to examine the
association between a patient’s QOL and a time-to-
event end point. In cancer vaccine trials, immuno-

logic measures such as immunoglobulin G or
immunoglobulin M response are often measured
longitudinally, and it is of interest to examine their
association with time to event. Recent studies sug-
gested that circulating tumor cells are associated
with poor patient prognosis and outcomes in pa-
tients treated for metastatic cancer and have been
used as a surrogate for progression-free survival and
overall survival. These types of longitudinal mea-
sures themselves are treated as important outcomes,
and therefore statistical methods that can model
both the longitudinal and the time-to-event compo-
nents jointly are becoming increasingly essential in
most cancer clinical trials.

The early development of joint models for lon-
gitudinal and survival data was primarily motivated
from HIV/AIDS clinical trials, in particular, joint
modeling of survival data and longitudinal CD4
counts. These articles include DeGruttola and Tu,1

Tsiatis et al,2 Faucett and Thomas,3 Faucett et al,4

LaValley and DeGruttola,5 Wulfsohn and Tsiatis,6

Pawitan and Self,7 Taylor et al,8 Brown et al,9 Wang
and Taylor,10 and Chi and Ibrahim.11 Other appro-
aches considering a multivariate longitudinal measure
include Henderson et al,12 Xu and Zeger,13,14 and
Song et al.15

Articles on joint modeling of time-to-event and
quality-of-life data in a cancer context include Chi
and Ibrahim,11,16 and Kirkwood et al.17,18 Articles
on cancer vaccine (immunotherapy) trials include
Ibrahim et al,19 Brown and Ibrahim,20,21 and Chen
et al.22 Joint modeling in other types of biomedical
applications include Schluchter23 and Hogan and
Laird.24 An excellent general review article on joint
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modeling of longitudinal and survival data is given in Tsiatis and
Davidian.25 Ibrahim et al26 also give an overview of joint modeling
methods in their book. Joint models for longitudinal and survival data
in which the survival component of the model is a cure rate model are
also useful in cancer research. Law et al,27 Brown and Ibrahim,21 and
Chen et al22 consider such models for cancer clinical trials.

WHY SHOULD WE DO JOINT MODELING?

Joint models are increasingly used in clinical trials because (1) they
provide more efficient estimates of the treatment effects on the time to
event, (2) they provide more efficient estimates of the treatment effects
of the longitudinal marker, and (3) they reduce bias in the estimates of
the overall treatment effect, that is, the treatment effect on survival and
the longitudinal marker. These properties were recently demonstrated
in Chen et al (manuscript submitted for publication), as well as in the
analysis of the E1193 trial and the simulation studies given here. A less
biased estimate leads to a more accurate estimate of the treatment
effect. For example, if a particular drug reduces the hazard of a partic-
ular disease by 30%, then a joint model may lead to an estimated
hazard ratio of 0.75, whereas a conventional model (eg, a Cox model)
that does not incorporate the longitudinal data into the analysis may
yield a hazard ratio of 0.80. In this case, we say that the estimate based
on the joint model is less biased than the Cox model estimate because
0.75 is closer to the true hazard ratio of 0.70. Moreover, joint models
typically lead to estimates with a smaller SE than the Cox model
estimate of the treatment effect. It was shown in the simulation studies
of Chen et al (manuscript submitted for publication) that when the
true hazard ratio is 0.67 and the longitudinal effect is moderately
correlated with the time to event, the treatment effect was estimated as
0.76 with an SE of 0.063 in a 400-subject study. When the joint model
is used, the estimate is 0.67 (unbiased) with a smaller SE of 0.051. This
is promising because a smaller SE implies a more precise estimate. As
a result, joint models are now increasingly used and often preferred
over the Cox model alone because they yield more accurate and more
precise estimates of the treatment effect. This phenomenon also has
major implications on the design of a study. Greater efficiency implies
higher power and smaller sample sizes in designing clinical trials. Thus
incorporating the longitudinal data into the design of a study has the
potential of yielding lower sample sizes with higher power compared
with that of conventional designs based on time-to-event data alone
(Chen et al, manuscript submitted for publication).

THE STRUCTURE OF A JOINT MODEL

There are two basic components of a joint model: the longitudinal
component and the time-to-event (survival) component. The longi-
tudinal component consists of a model for the longitudinal biomark-
ers. This model typically consists of a linear mixed model; in other
words, it consists of a linear model with random effects. This linear
mixed model has the structure

Yij � Xij � �ij, (1)

where Yij is the observed outcome for the ith subject at the jth time
point. The quantity �ij is a random error term and is usually assumed
to be normally distributed. The quantity Xij is typically called the

trajectory function of the model. The trajectory function is typically
specified as a linear function of time tij and a treatment indicator Zi,
given by Xij � �0i � �1i � tij � �Zi, or as a quadratic function of time.
The quantities �0i and �1i are assumed to be random and have a
multivariate normal distribution. The coefficient � assesses the treat-
ment effect on the longitudinal marker. The survival component of
the joint model typically consists of a parametric model, such as an
exponential model or a Weibull model. The longitudinal and survival
components of the joint model are typically linked (joined) through
the trajectory function. Specifically, the hazard function of the survival
model at time t can be written as:

h�t� � h0�t� exp��Xij � �Zi�, (2)

where � is the direct treatment effect on the time to event. The
parameter � measures the association between the longitudinal
marker and the time to event. Figure 1 shows the underlying causal
diagram for joint modeling. The diagram focuses on testing the direct
treatment effect on survival, which is assessed by the estimate of �, and
the effect of the longitudinal process on survival, which is assessed by
the estimate of �. In this joint model, we see that there are three types
of treatment effects: (1) �, which is the treatment effect on the longi-
tudinal marker; (2) �, which is the treatment effect on the time to
event; and (3) �� � �, which we call the overall treatment effect. Our
inferential goal is then to estimate the parameters, �, �, and �, and
design clinical trials based on these joint models using prespecified
values of �, �, and � (see Chen et al, manuscript submitted for
publication). A value of � � 0 means that there is no association
between the longitudinal marker and the event time, which implies
that information from the longitudinal marker does not improve on
the estimate of the survival treatment effect � compared with an
analysis based on the time-to-event data alone. In this case, no joint
modeling is needed and one may ignore the longitudinal data in
carrying out the survival analysis. A value of � less than 0 implies that
the hazard decreases, which in turn implies that increases in the lon-
gitudinal marker yield increases in the time to event.

Although other joint modeling formulations have been proposed
in the literature, we focus here on the model described above, as it is
the earliest developed joint model and leads to a straightforward
interpretation of the overall treatment effect. It allows the trajectory to
be different for different treatment groups through the coefficient �.
For example, if treatment is negatively associated with the longitudinal
marker, such as circulating tumor cells, for example, the trajectory will
decrease more steeply over time in the treatment group compared
with the trajectory of the marker in the control group. Its effect on the

Y(t) X(t)

Z

 S γ

β

α

Fig 1. Causal diagram. Y(t), observed longitudinal data; X(t), trajectory function;
S, survival; Z, treatment; �, treatment effect on survival; �, treatment effect on
longitudinal process; �, effect of longitudinal process on survival.
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time to event, such as relapse-free survival, is measured by �. For
example, if � � 0.5, it means that the hazard will increase by 0.5 per
unit increase in the trajectory in any treatment group. Hsieh et al28

examined the robustness and efficiency of the estimates from this joint
model through simulation studies and concluded that the estimates
were both robust and efficient. One limitation of this model is that it
assumes a common trajectory structure in both treatment groups. If
the trajectory structure is very different, such as a linear function of
time in one treatment group, and a quadratic function of time in
another treatment group, it will be necessary to fit a different joint
model for each group.

DESIGN AND ANALYSIS STRATEGIES IN JOINT MODELS

One of the natural strategies to consider in the joint analysis of longi-
tudinal and survival data is to incorporate the longitudinal measures
directly into the Cox model as time-varying covariates and then pro-
ceed with the Cox model analysis. However, because the longitudinal
measures typically have a great deal of random error from subject to
subject, this approach will lead to highly biased (typically attenuated)
and inefficient estimates of the treatment effect. One of the first ap-
proaches that posited a linear mixed model for the longitudinal data is
the two-stage approach described in Tsiatis et al,2 where a linear mixed
model is fit to the longitudinal data, and then the fitted trajectory
function is inserted into the Cox model as a time-varying covariate at
the second stage. This approach is certainly better than using the raw
longitudinal data as time-varying covariates in the Cox model, but it
still leads to potentially biased and inefficient estimates. Many articles
on joint modeling have now emerged since the Tsiatis et al2 article,
where estimates are computed based on a joint model rather than a
two-stage model.

Incorporating longitudinal information into the design of a time-
to-event study is also greatly beneficial because it may lead to higher
power and lower sample size as compared with designing a study
based on time-to-event data alone. In a recent article, Chen et al
(manuscript submitted for publication) derive sample size formulas
on the basis of joint models and show that higher power is obtained in
settings where the longitudinal marker is highly correlated with the
time to event and treatment. For example, if the true hazard ratio is 0.7
between treatment and control, this will require a total of 283 events to
achieve 85% power using a one-sided .025 level score test. If we do not
incorporate the longitudinal information into the model, this will
result in a hazard ratio of 0.73, thus requiring a total of 363 events to
achieve similar power. Therefore, if the longitudinal marker and time-
to-event outcome have sufficiently high correlation, a joint model
leads to an increased hazard ratio between control and treatment
arms, thus requiring fewer subjects for a given desired power.

SPECIFIC EXAMPLES IN WHICH JOINT MODELS ARE USED

QOL

The collection of QOL data in cancer clinical trials has become
increasingly common, particularly when the survival benefit of a treat-
ment is anticipated to be small or modest. In fact, one might argue that
for a patient, improvement in QOL is often more important than any
modest survival benefit in treatment decisions. Therefore, it is of great

interest in these studies to characterize the association between time to
event and QOL through joint modeling and to understand the trade-
offs between QOL and survival. A specific chemotherapy may prolong
survival or relapse, but the QOL in that prolonged period may be poor,
and thus the clinician must decide whether such a benefit is worth it
for these patients.

Joint Modeling Analysis of E1193

As a specific example, we consider Eastern Cooperative Oncol-
ogy Group trial E1193; the goal in this study was to examine the
association between QOL and overall survival time for the patients on
the study. E1193 was a phase III cancer clinical trial of doxorubicin,
paclitaxel, and the combination of doxorubicin and paclitaxel as
front-line chemotherapy for metastatic breast cancer. Patients receiv-
ing single-agent doxorubicin or paclitaxel crossed over to the other
agent at time of progression. QOL was assessed using the Functional
Assessment of Cancer Therapy–Breast scale (Brady et al29). The Func-
tional Assessment of Cancer Therapy–Breast includes five general
subscales (physical, social, relationship with physician, emotional, and
functional), as well as a breast cancer–specific subscale. The maximum
possible score is 148 points. A higher score is indicative of better QOL.
In this subset analysis, we analyzed overall survival after entry to the
cross-over phase (survival after disease progression) and its associa-
tion with treatment and QOL, which was measured at two time points
during this phase.

A total of 252 patients entered the cross-over phase and had at
least one QOL measurement, 124 patients crossed over from paclitaxel
to doxorubicin (median survival is 13.0 months in this subgroup), and
128 patients crossed over from doxorubicin to paclitaxel (median
survival is 14.9 months in this subgroup). The data we used are quite
mature; only two subjects who crossed over to doxorubicin and six
subjects who crossed over to paclitaxel were censored. However, a
substantial proportion (35%) of patients had only one QOL measure-
ment. If missing data are informative, it can lead to biased estimates of
the QOL effect and the treatment effect in classical models. However,
this specific issue is beyond the scope of this present article and will be
taken up elsewhere. A few QOL measurements seemed to be outliers
and this may be due to data errors. We decided not to exclude them,
however, because one of the advantages of using a joint model is its
ability to reduce bias resulting from incomplete or error-prone data.

To get a feel for what the trajectories look like, we plotted the
trajectory function for the E1193 study. Figure 2 shows the linear
trajectory Xij for each subject. We see from this plot that these trajec-
tories typically have a lot of noise, and hence treating them as random
is a key part of the analysis. To compare results from different analysis
strategies, we applied the Cox model with the treatment covariate
only, the two-stage model incorporating the two QOL measurements,
and the joint model of section 3 to examine the treatment effect and
the association between QOL and overall survival. We refer the reader
to the article by Wulfsohn and Tsiatis6 for more mathematical details
on this joint model. Because there are only two QOL measurements,
we assumed the QOL trajectory is a linear function of time. To satisfy
the normality assumption for the longitudinal QOL data, we trans-
formed the observed QOL to QOL1/2. We tested the treatment-by-
time interaction term in a separate mixed model based on the QOL
data alone, and the interaction term was not significant. As a result, it
is reasonable to assume that QOL1/2 follows a trajectory of the form
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�0i � �1i t � �Treatment in the two-stage model and the joint model.
Results are reported in Table 1.

From Table 1, we see that the overall treatment effect is estimated
as �0.251 (equivalent to a hazard ratio of 0.779) in a Cox model
without incorporating the QOL data. The overall treatment effect is
estimated as �0.261 (hazard ratio of 0.771) in the two-stage model
and estimated as �0.277 (hazard ratio of 0.756) in the joint model.
This is consistent with the results of the simulation studies reported in
Chen et al (manuscript submitted for publication). The joint model-
ing approach typically gives unbiased and larger estimates of the treat-
ment effect when the longitudinal data (QOL in this analysis) is
associated with survival. The estimates of� in the two-stage model and
the joint model, denoted �̂, are similar and consistent with the find-
ings in Wulfsohn and Tsiatis,6 where they reported a slightly larger �̂
and SE in the joint model as compared with the two-stage model. For
the E1193 data, �̂ � �0.277 (SE � 0.071) in the two-stage model, and
�̂ � �0.445 (SE � 0.118) in the joint model.

Simulation Studies

To examine the operating characteristics and evaluate the perfor-
mance of the proposed joint modeling approach and two commonly

used (naive) approaches on the assessment of the treatment effect, 12
sets of simulation studies with different values of � � (0, 0.5), � � (0,
0.25, 0.5), and � � (0, 0.5) were performed. For each set of simula-
tions, 1,000 replications were used. For each replication, 400 subjects
were generated, with 200 each in the treatment and control arms. The
true longitudinal trajectory was simulated as Xij ��0i ��1i � tij ��Zi,
where �0i � N(0,1), �1 � N(0,0.52), and the (moderate) correlation
between (�0i,�1i) is 0.3. The observed longitudinal data were simulated
from the model Yi (tj) � N (Xi(tj), �e

2) with �e
2 � 0.52. The time of

measurement for the longitudinal data is fixed at tj � (0, 0.5, 1.0, 1.5,
2.0, 2.5) years after enrollment, with a maximum of six measurements.
The survival time is generated from equation 2 with a constant base-
line hazard of 	(t) � 0.25 (median survival � 2.77 years) using an
inverse probability method. We assume uniform right censoring for
the survival time in the interval1,3 to allow a minimum follow-up time
of 1 year. We fit three models for each simulation: (1) a Cox model
(denoted as model A) without the longitudinal trajectory; (2) a Cox
model using the observed longitudinal data as a time-dependent co-
variate (denoted as model B); (3) the joint model discussed in equa-
tions 1 and 2 (Wulfsohn and Tsiatis6).

Table 2 presents the bias, SEs, 95% CI coverage probabilities, and
type I and II error rates for the estimation of the treatment effect on
survival (ie, �), comparing the two naive approaches and the joint
model. First, Table 2 suggests that ignoring the longitudinal process in
the proportional hazards model (model A) could result in a biased
estimate of the treatment effect on survival with a less than nominal
level of 95% for the CI coverage probability when the effect of treat-
ment on the longitudinal process (ie, �) and the effect of the longitu-
dinal process on survival (ie, �) are not equal to zero under the null
hypothesis (ie, � � 0) or when the effect of the longitudinal process on
survival (ie, �) is not equal to zero under the alternative hypothesis (ie,
� � 0). For example, when � � 0.5 and � � 0.5, the estimate of � is
positively biased by 0.206 with an empirical 95% CI coverage proba-
bility equal to 0.567 under the null hypothesis of � � 0, whereas it is
positively biased by 0.115 with an empirical 95% CI coverage proba-
bility equal to 0.838 under the alternative hypothesis corresponding to
� � 0.5. Second, Table 2 also suggests that both the Cox model B and
the joint model give nearly unbiased estimates for the treatment effect
on survival (ie, �) and a very close nominal level of 95% for the CI
coverage probability. Finally, the SEs for the estimate of � are similar
for the three approaches based on the simulations we have consid-
ered here.

Table 3 presents bias, SEs, 95% CI coverage probabilities, and
type I and II error rates for the association between the longitudinal
process and survival (ie, �), comparing the joint model with the naive
approach that treats the error-prone longitudinal data as a time-
varying covariate in the Cox model. First, Table 3 suggests that the
naive approach gives biased estimates of � and a less than nominal
level of 95% for the CI coverage probability when � � 0, whereas the
joint modeling approach gives unbiased estimates. For example, when
� � 0.5 and � � 0.5, the estimate of � is biased toward the null by
�0.071 with an empirical 95% CI coverage probability equal to 0.668
under the alternative hypothesis when � � 0.5. Second, Table 3 also
suggests that the joint model gives nearly unbiased estimates for the
effect of the longitudinal process on survival (ie, �) and a very close to
the nominal level of 95% for the CI coverage probability. Finally, the
joint modeling approach gives slightly smaller SEs for the estimates of
� and smaller type II error rates compared with the naive approach
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Fig 2. Trajectory function for E1193 study. QOL, quality of life.

Table 1. Parameter Estimates With SEs for the E1193 Data

Parameter

Cox Model With
Treatment Only

Two-Stage
Model Joint Model

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Overall treatment
(�̂ � �̂�̂) �0.251 0.130 �0.261 0.130 �0.277 0.141

Treatment effect on
survival (�̂) �0.245 0.136

Treatment effect on
QOL (�̂) 0.083� 0.129 0.073 0.129

QOL’s effect on
survival (�̂) �0.277 0.071 �0.445 0.118

Abbreviation: QOL, quality of life.
�Obtained from the first stage model with both intercept and time of

measurement included in the trajectory function.
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that treats the observed error-prone longitudinal biomarkers as time-
dependent covariates (Cox model B). Based on the 12 scenarios that
we have considered, the average SE for the estimate of � for Cox model
B and the joint model are 0.053 and 0.042, respectively, suggesting that
the joint model is more efficient.

DISCUSSION

In this article, we have discussed advantages and applications of joint
models for longitudinal and survival data in cancer clinical trials. We
reanalyzed data from a cancer clinical trial investigating the treatment
effect with and without incorporation of the longitudinal QOL
marker. When the longitudinal data are associated with treatment, the
overall treatment effect is an aggregated effect of time-to-event and the
longitudinal process. In the E1193 analysis, we found a small treat-
ment effect directly on QOL (the estimate of � is 0.073 from the joint

model). The estimate of the hazard ratio changed from 0.779 when the
QOL effect was not incorporated to 0.756 when using the joint model.
It has been shown that when the longitudinal data are not associated
with treatment (� � 0), ignoring the longitudinal data will still lead to
attenuated estimates of the treatment effect due to fitting an incorrect
model (Horowitz,30 Abbring et al31). This phenomenon is not com-
monly known in clinical trials. The degree of attenuation depends on
the degree of the association between the longitudinal data and time-
to-event data (�). Furthermore, the estimate of the treatment effect
remains unbiased when there is no association between the longitudi-
nal marker and the time to event. Use of a joint modeling analysis
strategy leads to the correction of bias and increase in power for
estimating the direct treatment effect � and the overall treatment effect
�� � �. However, joint modeling is not yet commonly used in
designing cancer clinical trials or in the primary analysis of clinical
trials. Most applications of joint modeling in the literature focus more
heavily on research issues, and in particular, on estimating the effect of
the longitudinal outcome on time to event. When the purpose of the
clinical trial is to investigate the effect of the longitudinal outcome on
time to event, the joint modeling approach leads to unbiased and
more efficient estimates of the longitudinal effect when the correct
model for the time-to-event data is used. Chen et al (manuscript
submitted for publication) provided a sample size formula and ad-
dressed various design issues. The power was found to be related to the
covariance matrix of the random effects and the truncated moments
of the event time. However, the covariance matrix of the random
effects is not known in practice. Its estimate, however, can be used
for sample size determination. Frequency and timing of the data
collection can also have a significant impact on sample size when the
measurement error is relatively large. Therefore, data collection strat-
egies and planning are important when carrying out a joint model
study design.
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Table 2. Comparison of the Estimation of the Direct Treatment Effect on Survival (�)

� � �

Cox Model A Cox Model B Full Joint Model

Bias SE 95% CP
Type I/II
Error� Bias SE 95% CP

Type I/II
Error� Bias SE 95% CP

Type I/II
Error�

0 0 0 �0.004 0.161 0.958 0.042 �0.004 0.161 0.958 0.042 �0.004 0.161 0.962 0.038
0 0 0.5 �0.004 0.161 0.958 0.042 �0.005 0.164 0.960 0.040 �0.004 0.163 0.959 0.041
0 0.25 0 0.000 0.133 0.957 0.043 0.000 0.133 0.955 0.045 0.000 0.133 0.949 0.051
0 0.25 0.5 0.120 0.131 0.863 0.137 0.012 0.133 0.949 0.051 0.000 0.132 0.947 0.053
0 0.5 0 0.000 0.118 0.957 0.043 0.000 0.118 0.953 0.047 0.000 0.119 0.951 0.049
0 0.5 0.5 0.206 0.116 0.567 0.433 0.026 0.118 0.950 0.050 0.000 0.118 0.946 0.054
0.5 0 0 0.001 0.149 0.964 0.065 0.002 0.149 0.965 0.068 0.003 0.149 0.964 0.067
0.5 0 0.5 0.001 0.149 0.964 0.065 0.001 0.152 0.967 0.085 0.002 0.149 0.961 0.077
0.5 0.25 0 �0.023 0.126 0.956 0.027 �0.003 0.127 0.954 0.018 0.002 0.127 0.953 0.016
0.5 0.25 0.5 0.095 0.125 0.900 0.003 0.010 0.127 0.957 0.014 0.001 0.125 0.950 0.014
0.5 0.5 0 �0.089 0.115 0.888 0.040 �0.016 0.116 0.953 0.009 0.004 0.117 0.954 0.010
0.5 0.5 0.5 0.115 0.114 0.838 0.000 0.010 0.116 0.956 0.006 0.002 0.114 0.948 0.009

Abbreviation: 95% CP, 95% CI coverage probability.
�Type I or II error rate based on 1,000 simulations.

Table 3. Comparison of the Estimation of the Longitudinal Data Effect on
Survival (�)

� � �

Cox Model B Full Joint Model

Bias SE
95%
CP

Type I/II
Error� Bias SE

95%
CP

Type I/II
Error�

0 0 0 0.002 0.062 0.945 0.055 0.000 0.045 0.955 0.045
0 0 0.5 0.002 0.062 0.945 0.055 0.000 0.045 0.955 0.045
0 0.25 0 �0.023 0.051 0.933 0.002 0.003 0.038 0.947 0.000
0 0.25 0.5 �0.024 0.051 0.925 0.007 0.003 0.038 0.948 0.000
0 0.5 0 �0.063 0.050 0.733 0.000 0.005 0.043 0.952 0.000
0 0.5 0.5 �0.066 0.049 0.720 0.000 0.004 0.044 0.954 0.000
0.5 0 0 0.001 0.057 0.951 0.049 0.001 0.041 0.948 0.052
0.5 0 0.5 0.001 0.057 0.951 0.049 0.001 0.041 0.948 0.052
0.5 0.25 0 �0.027 0.049 0.922 0.002 0.002 0.037 0.954 0.000
0.5 0.25 0.5 �0.028 0.049 0.924 0.003 0.002 0.038 0.946 0.000
0.5 0.5 0 �0.068 0.049 0.713 0.000 0.005 0.044 0.954 0.000
0.5 0.5 0.5 �0.071 0.049 0.668 0.000 0.004 0.045 0.956 0.000

Abbreviation: 95% CP, 95% CI coverage probability.
�Type I or II error rate based on 1,000 simulations.
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